
Zapp - Report
12 June 2014

Matricola studente: 146077 Leonardo Lanzinger

Matricola studente: 154849 Giulio Michelon

Matricola studente: 151665 Matteo Lever

Project video:

http://youtu.be/iGdvGbCEKGo

Testing
Per usare questa app potete usare un account di testing:
username: mailclientandroid@gmail.com
password: ciaozapp

Miniguida per l'utilizzo di Voice Control
Nell'interfaccia di lettura della email è possibile controllare l'app tramite Voice Control premendo il pulsante in basso al centro con l'icona del
microfono. Zapp riconosce i seguenti comandi vocali:

Rispondi + corpo del messaggio
Rispondi a tutti + corpo del messaggio
Ricordami / Ricordamelo oggi

Ricordami / Ricordamelo domani

Ricordami / Ricordamelo

Abstract
Every day we receive a lot of emails. We rely on them to organize our tasks, to schedule our work and to update people in our projects. We want a
better organization through emails. The usual inbox is full of noise and old emails. We want to organize the flow putting the important content into a
todo list that helps you meet deadlines with scheduled notifications. Zapp will display by default only marked or unread emails to keep the main tab
clear and organized while giving easy and fast control over the inbox through swipe gestures. The app will also feature a voice control that will provide
even more speed and comfort while replying and organizing messages. Our solution is completely different from standard Android email clients: we
turn your email client into a task-oriented reminder list that it's fast and easy to use.

Related work
All mail clients in the market are somehow similar to our app since they all try to solve the same problem: emails management.
Some app that uses emails as tasks are Mailbox, Mailpilot and Evomail. They all have very nice apps for iOS, Mac OSX and Android. Our competitors
have a similar approach but they dont't follow the todo list method as much as our app. In fact Zapp* focuses its main tab in the to do list.

Usage Model
Once the user has set his google account through the login he can start using the app.

On the left side the user can find the Drawer: the slide-in menu of the app. The sections are the Todo list, the Inbox, Sent mails and Trash Bin. The user
can access the Settings touching on his name or through the physical settings button.

The user can organize his emails through gestures. He can swipe to the left in the Inbox to set the mail as a task that he has to do and he can choose
the expiration of the task. Alternatively he can swipe to the right to delete the email.

Once the user completes his task he can set his tasks as done swiping to the right on the Todo section. In the Todo section all the tasks are listed in
expiration order and there are labels displayed to help the user. Unread emails are also displayed in this todo list tab.

The Sent section is the place where he can find the mail that he has send and he can find deleted mails in the Trash Bin section.

In the Settings the user can change his email and password and he can decide his work time. The notification for his task will be displayed
accordingly to his personal time table. For example if he set a task for tomorrow and his working time starts at 8.30 he will receive a notification at 8.30
that will help him remember the task. If a task is not completed before the work end time another notification is triggered accordingly to the set end
time.

Wireframes

Architecture Design
The app is based on the IMAP protocol and works only with Gmail accounts. We chose to go with google accounts because JavaMail, the library
which supports mail transfer protocols in Java, has a different implementation for each mail server. So to support different mail providers the app
would have implemented several version of its core classes. Gmail has been chosen over different email providers since it is the most used email
server in the Android environment.

Zapp implements a mail client, as well as a todo list. Both components work toghether, as they share the same Collection of Email objects inside the
app. Zapp uses several Android built in services, such as Notifications, VoiceRecognition and AccountManager.

Data is stored both in Android SharedPreferences (account data) and in LocalStorage (email list).

Requirements / assumptions

As well as a valid Google account (which can be created through Zapp) the application needs data connection to contact the remote email server.

Tools and software used

The team used Android Studio as a IDE to program Zapp, as well as Sketch 3 to design mockups and graphics and Final Cut to edit the final video.

Implementation
JavaMail controls all the IMAP logic that works in the background, and is implemented mainly in four Java classes that downloads Inbox emails, send
mail and keep Zapp and Gmail server up to date with each other.

Accounts are added from Android AccountManager and managed inside the app. Zapp retrieves from Google the account name and surname as well
as the user profile picture.

Notifications are managed through Android NotificationManager and BroadcastReceiver.

Voice control is implemented using Android RecognizerIntent and then passing the result to SpeechAnalizer.java that analizes the resulting voice
command and performs actions.

The main app layout consists in a FragmentContainer that displays one at a time in the main tab four different fragments (TodoFragment.java,

InboxFragment.java, SentFragment.java and TrashBinFragment.java). MainActivity also implements DrawerLayout for the lateral slide-in menu.
Each content fragments displays a PullableListView (an external library) that contains the email list and when pulled down triggers an animation and
the ReceiveEmail method.

Custom swipe library

Each Email item in the PullableListView implements swipe gestures to perform different actions. Swipe gestures have been implemented from scratch
by the team as Android doesn't provide a native implementation of swipe gestures. Those custom Java classes are Animator.java and
SwipeDetector.java. This is a relevant part of the programming process as it is an emerging desing trend though still not supported by native libraries.

External libraries

Zapp uses (as well as Pulltorefresh Listview and JavaMail) also Castorflex.Smoothprogressbar library to provide an colorful progressbar while
receiving emails and Doomonafireball.Betterpickers to implement new google-like Date and Time Picker that are used in new Google Calendar app
but not included in the standard Android JDK.

Evaluation
Zapp has been tested on real smartphones using real Gmail accounts. We asked several users to try and use our app and we got positive feedback
mostly because of the quickness of the interaction with the system. Voice Recognition and Swipe Gestures are the most enjoyed features as they
reduce significantly the interaction effort of the user.

In order to keep data load to the minmum Zapp doesn't automatically download attachments from emails and only donwloads them after the users
tells the app to do so.

Limitations
Although the app has been tested several times using real Gmail accounts, sometimes it crashes when trying to perform network operations while
losing network service.

Member contributions
Giulio Michelon 60 commits / 3664 ++ / 4,820 --

Android app development (frontend)
Mockup design
Graphic design
Swipe gesture implementation

Leonardo Lanzinger 125 commits / 14,224 ++ / 6,363 --

Android app development (backend and frontend)
Set up of Github repository
JavaMail logic and implementation
External libraries import
Swipe gesture implementation
Mockup design
Logo design

Matteo Lever 46 commits / 6674 ++ / 3,619 --

Android app development (backend and frontend)
JavaMail logic and implementation
Account management implementation
Mockup design

Lesson learned
We should have planned better the implementation of the JavaMail part of the app, as it happened a few times that we had to refractor the logic in
order to work with additional features. This would have been possible only if we had known before the features of JavaMail.

References
Github repository

https://github.com/leolanzinger/mailclient

Project video

http://youtu.be/iGdvGbCEKGo

External libraries

https://github.com/johannilsson/android-pulltorefresh

https://github.com/castorflex/SmoothProgressBar

https://github.com/derekbrameyer/android-betterpickers

Similar apps

www.mailpilot.co
http://evomail.io/
http://www.mailboxapp.com/

Code Appendix
Swipe gestures

Voice recognition

